Density functional study of amorphous, liquid and crystalline Ge(2)Sb(2)Te(5): homopolar bonds and/or AB alternation?
نویسندگان
چکیده
The amorphous, liquid and crystalline phases of the phase change material Ge(2)Sb(2)Te(5) (GST) have been studied by means of density functional/molecular dynamics simulations. The large sample (460 atoms and 52 vacancies in the unit cell) and long simulations (hundreds of picoseconds) provide much new information. Here we extend our original analysis (2007 Phys. Rev. B 76 235201) in important ways: partial coordination numbers and radial distribution functions, bond angle distributions, new local order parameters, vibration frequencies, and the charges on atoms and vacancies. The valence band densities of states in amorphous and crystalline GST are compared with ones from x-ray photoemission spectroscopy. The results for the liquid phase are new and those for the crystalline phase much expanded. GST shows pronounced AB alternation (A: Ge, Sb; B: Te), especially in its amorphous phase, and ABAB squares play a central role in the amorphous to crystalline transition. We comment on earlier speculations concerning the nature of the amorphous to crystalline transition.
منابع مشابه
Pressure-induced reversible amorphization and an amorphous-amorphous transition in Ge₂Sb₂Te₅ phase-change memory material.
Ge(2)Sb(2)Te(5) (GST) is a technologically very important phase-change material that is used in digital versatile disks-random access memory and is currently studied for the use in phase-change random access memory devices. This type of data storage is achieved by the fast reversible phase transition between amorphous and crystalline GST upon heat pulse. Here we report pressure-induced reversib...
متن کاملInherent Simple Cubic Lattice Being Responsible for Ultrafast Solid-Phase Change of Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub>
Crystallization of solid is generally slow in kinetics for atoms trapped in solids. Phase-change materials (PCMs) challenge current theory on its ultrafast reversible amorphous-to-crystal transition. Here by using the stochastic surface walking global optimization method, we establish the first global potential energy surface (PES) for Ge2Sb2Te5. By analyzing all structures on the global PES, w...
متن کاملAtomic and electronic structures of amorphous Ge(2)Sb(2)Te(5); melt-quenched versus ideal glasses.
To investigate an amorphous structure of Ge(2)Sb(2)Te(5) that satisfies the 8-N rule (so-called 'ideal glass'), we perform alternative melt-quench simulations on Si(2)As(2)Se(5) and replace atoms in the final structure with Ge-Sb-Te. The resulting structures have salient features of the 8-N rule such as the tetrahedral configuration for all Ge atoms and the localized Te lone pairs at the valenc...
متن کاملPressure tunes electrical resistivity by four orders of magnitude in amorphous Ge2Sb2Te5 phase-change memory alloy.
Ge-Sb-Te-based phase-change memory is one of the most promising candidates to succeed the current flash memories. The application of phase-change materials for data storage and memory devices takes advantage of the fast phase transition (on the order of nanoseconds) and the large property contrasts (e.g., several orders of magnitude difference in electrical resistivity) between the amorphous an...
متن کاملAb initio models of amorphous InN
In this paper, we present the first structural model of amorphous indium nitride obtained from first-principles simulation. We created a small 64-atom model by quenching from the melt and analyzed a chemically ordered 250-atom model of Mousseau and Barkema. We find that both N and In atoms tend to be fourfold. Upon relaxation, we find no homopolar bonds in the small cell and only one in the 250...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of physics. Condensed matter : an Institute of Physics journal
دوره 20 46 شماره
صفحات -
تاریخ انتشار 2008